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ALMA OBSERVATORY: THE SCHEDULING PROBLEM TO 

SOLVE
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A L M A  O B S E R VAT O R Y

SOME FACTS

• It’s name comes from Atacama Large Millimeter/submillimeter Array (ALMA)

• It’s the biggest astronomic observatory in the world (made up of 66 anthenas)

• Originated from the colaboration between Europe, North America, Asia and the Chilean

Republic

• It works 24/7 all 365 days of the year

• Most of the work done in the ALMA installations is related with: Stars formation,

molecular clouds and the early universe
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→ALMA gives a warranty of 30 days to 
deliver the final product of the 
scientific request

→The operator doesn’t know exactly
how much the image processing of 
each MOUS it’s going to last

→The system has a fixed level of 
service (number of available servers)

→Therefore finding an 
efficient way to assign and 
sequenciate the released
jobs to the servers is key!

B U S I N E S S  P R O B L E M  
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L I T E R AT U R E  R E V I E W

UNRELATED MACHINES SCHEDULING WITH STOCHASTIC PROCESSING TIMES (SKUTELLA, 2016)

Presents a MIP for completion time minimization and also a strategy to derive in a LP-

relaxation

FROM PREDICTIVE TO PRESCRIPTIVE ANALYTICS (BERTSIMAS, 2020)

Proposes an approach to unify an ML model and a optimization algorithm with a weighting

function that is meant to reduce the performance diferences
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GENERAL OBJECTIVE

Minimize the flow times of the MOUS (member of unit set ) and understand which are the

key factors to estimate the processing times and their uncertainty

O B J E C T I V E S

SPECIFIC OBJECTIVES

• Generate estimations for the processing times of the MOUS

• Generate estimations over the uncertainty related to the estimations of the processing

time of the MOUS

• Understand which variables explain better the estimation of processing time of the

MOUS and which variables explain better the uncertainty related to the estimations of

the processing time of the MOUS

• Formulate a stochastic and robust matematical model of assignation and

sequenciation capable of getting solutions that are near in relation to the optimal

solution, by considering the presence of the uncertainty related to the estimations
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M E T H O D O LO G Y
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P R E D I C T I V E  M O D E L

QUANTILE FOREST

• The elaboration of the quantile

forest is no different than the

elaboration of random forest. The

main difference relies in the

moment when a prediction is

made

• Given ‘k’ bagged trees (like in

random forest) we can compute a

quantile prediction for some

observation ‘x’ by considering the

aggregation of each tree

estimation (all ‘k’ estimations) for

thje unknown 𝑌 as an empirical

distribution function for 𝑌

• Then for a specified percentile we

do 𝑄 𝑌|𝑋 𝜏 = inf{𝑦: 𝐹 𝑌 𝑋 𝑦 ≥ 𝜏}
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O P T I M I Z AT I O N  M O D E L S

• 𝑀: Amount of machines

• 𝐽: Amount of jobs

• 𝑇: Time horizon

• 𝜏: Window of time to assign the start of the 𝑗 job
processing 

• 𝑥𝑖𝑗𝑡: Assignation variable that indicates the start of the 
𝑗 job processing at the machine 𝑖 in the 𝑡 moment

• 𝑝𝑗: Processing time of the 𝑗 job

• 𝑟𝑗: Release time of the 𝑗 job

𝑀𝑖𝑛 ෍

𝑗∈𝐽

𝐹𝑗

σ𝑖∈𝑀σ𝑡∈𝑇 𝑥𝑖𝑗𝑡 = 1 ∀𝑗 ∈ 𝐽 (1)

σ𝑗∈𝐽σ𝜏 =𝑚𝑎𝑥 0,𝑡−𝑝𝑗

𝑡−1 𝑥𝑖𝑗𝑡 ≤ 1 ∀𝑖 ∈ 𝑀, 𝑡 ∈ 𝑇 (2)

𝐹𝑗 = σ𝑖∈𝑀σ𝑡∈𝑇 𝑥𝑖𝑗𝑡 𝑡 + 𝑝𝑗 − 𝑟𝑗 ∀𝑗 ∈ 𝐽 (3)

σ𝑖∈𝑀σ𝑡=0

𝑟𝑗 −1
𝑥𝑖𝑗𝑡 = 0 ∀𝑗 ∈ 𝐽 (4) 

𝑥𝑖𝑗𝑡 ∈ 0,1 ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (5) 

ELEMENTS OF THE FORMULATION: PERFECT INFORMATION FORMULATION:
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O P T I M I Z AT I O N  M O D E L S

• 𝑀: Amount of machines

• 𝐽: Amount of jobs

• 𝑇: Time horizon

• 𝜏: Window of time to assign the start of the 𝑗 job
processing 

• 𝑥𝑖𝑗𝑡: Assignation variable that indicates the start of the 
𝑗 job processing at the machine 𝑖 in the 𝑡 moment

• ෝ𝑝𝑗: Processing time of the 𝑗 job

• 𝑟𝑗: Release time of the 𝑗 job

• ෢𝐼𝑄𝑗: Interquantile range for the processing time of the 
𝑗 job

• 𝜆: Penalization level

𝑀𝑖𝑛 ෍

𝑗∈𝐽

𝐹𝑗 + 𝜆 ∗ ෢𝐼𝑄𝑗

σ𝑖∈𝑀σ𝑡∈𝑇 𝑥𝑖𝑗𝑡 = 1 ∀𝑗 ∈ 𝐽 (1)

σ𝑗∈𝐽σ𝜏 =𝑚𝑎𝑥 0,𝑡−ෞ𝑝𝑗

𝑡−1 𝑥𝑖𝑗𝑡 ≤ 1 ∀𝑖 ∈ 𝑀, 𝑡 ∈ 𝑇 (2)

𝐹𝑗 = σ𝑖∈𝑀σ𝑡∈𝑇 𝑥𝑖𝑗𝑡 𝑡 + ෝ𝑝𝑗 − 𝑟𝑗 ∀𝑗 ∈ 𝐽 (3)

σ𝑖∈𝑀σ𝑡=0

𝑟𝑗 −1
𝑥𝑖𝑗𝑡 = 0 ∀𝑗 ∈ 𝐽 (4) 

𝑥𝑖𝑗𝑡 ∈ 0,1 ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (5) 

ELEMENTS OF THE FORMULATION: RECOMMENDATION FORMULATION WITH 
ABSOLUTE UNCERTAINTY PENALIZATION:
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O P T I M I Z AT I O N  M O D E L S

• 𝑀: Amount of machines

• 𝐽: Amount of jobs

• 𝑇: Time horizon

• 𝜏: Window of time to assign the start of the 𝑗 job
processing 

• 𝑥𝑖𝑗𝑡: Assignation variable that indicates the start of the 
𝑗 job processing at the machine 𝑖 in the 𝑡 moment

• ෝ𝑝𝑗: Processing time of the 𝑗 job

• 𝑟𝑗: Release time of the 𝑗 job

• ෢𝐼𝑄𝑗: Interquantile range for the processing time of the 
𝑗 job

• 𝜆: Penalization level

𝑀𝑖𝑛 ෍

𝑗∈𝐽

𝐹𝑗 +
෢𝐼𝑄𝑗
𝜆

σ𝑖∈𝑀σ𝑡∈𝑇 𝑥𝑖𝑗𝑡 = 1 ∀𝑗 ∈ 𝐽 (1)

σ𝑗∈𝐽σ𝜏 =𝑚𝑎𝑥 0,𝑡−ෞ𝑝𝑗

𝑡−1 𝑥𝑖𝑗𝑡 ≤ 1 ∀𝑖 ∈ 𝑀, 𝑡 ∈ 𝑇 (2)

𝐹𝑗 = σ𝑖∈𝑀σ𝑡∈𝑇 𝑥𝑖𝑗𝑡 𝑡 + ෝ𝑝𝑗 − 𝑟𝑗 ∀𝑗 ∈ 𝐽 (3)

σ𝑖∈𝑀σ𝑡=0

𝑟𝑗 −1
𝑥𝑖𝑗𝑡 = 0 ∀𝑗 ∈ 𝐽 (4) 

𝑥𝑖𝑗𝑡 ∈ 0,1 ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (5) 

ELEMENTS OF THE FORMULATION: RECOMMENDATION FORMULATION WITH 
EXPONENTIAL UNCERTAINTY PENALIZATION:
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O P T I M I Z AT I O N  M O D E L S

• 𝑀: Amount of machines

• 𝐽: Amount of jobs

• 𝑇: Time horizon

• 𝜏: Window of time to assign the start of the 𝑗 job
processing 

• 𝑥𝑖𝑗𝑡: Assignation variable that indicates the start of the 
𝑗 job processing at the machine 𝑖 in the 𝑡 moment

• ෝ𝑝𝑗: Processing time of the 𝑗 job

• 𝑟𝑗: Release time of the 𝑗 job

• ෢𝐼𝑄𝑗: Interquantile range for the processing time of the 
𝑗 job

• 𝜆: Penalization level

𝑀𝑖𝑛 ෍

𝑗∈𝐽

𝐹𝑗 + 𝜆 ∗
෢𝐼𝑄𝑗

ෝ𝑝𝑗

σ𝑖∈𝑀σ𝑡∈𝑇 𝑥𝑖𝑗𝑡 = 1 ∀𝑗 ∈ 𝐽 (1)

σ𝑗∈𝐽σ𝜏 =𝑚𝑎𝑥 0,𝑡−ෞ𝑝𝑗

𝑡−1 𝑥𝑖𝑗𝑡 ≤ 1 ∀𝑖 ∈ 𝑀, 𝑡 ∈ 𝑇 (2)

𝐹𝑗 = σ𝑖∈𝑀σ𝑡∈𝑇 𝑥𝑖𝑗𝑡 𝑡 + ෝ𝑝𝑗 − 𝑟𝑗 ∀𝑗 ∈ 𝐽 (3)

σ𝑖∈𝑀σ𝑡=0

𝑟𝑗 −1
𝑥𝑖𝑗𝑡 = 0 ∀𝑗 ∈ 𝐽 (4) 

𝑥𝑖𝑗𝑡 ∈ 0,1 ∀𝑖 ∈ 𝑀, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (5) 

ELEMENTS OF THE FORMULATION: RECOMMENDATION FORMULATION WITH 
PERCENTUAL UNCERTAINTY PENALIZATION:
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EMPIRICAL APLICATION TO ALMA SCHEDULING
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P R O C E S S I N G  T I M E  B E H AV I O R

estadísticos processing time [h]
count 0,1

mean 20,6

std 35,9

min 1,7

25% 4,1

50% 9,2

75% 18,5

max 258,1

• The support of the processing time is 
defined in a pretty wide range

• In order to recommend a schedule it’s
necessary to know how long is gonna take
a job to process
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D ATA S E T  D E S C R I P T I O N

DIMENSIONS

• 16 Attributes

• 410 MOUS

ATTRIBUTES DICTIONARY

• Requested_array: Tells if the array has been requested

• Scheduling_blocks: Is the amount of specific storage units

• Receiver_band: Tells which band is being used

• Antennas: Is the amount of antennas that are being used

• Spectral_windows: Is the amount of defined quadrants

• Fields: The amount of fields that are being used

• Channels: The amount of channels that are being used

• Result: Resume of expert knowledge

• Observation: Time of phenomena observation in seconds

• Doc_size: Size in GB of the MOUS

• Bandpass: Calibration parameter

• Phase: Calibration parameter

• Target: Calibration parameter

• Pointing: Calibration parameter

• Atmosphere: Resume of atmospheric conditions

• Processing_time: Time that a MOUS requires to be processed in the servers
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R E L AT I O N  B E T W E E N  T H E  P R O C E S S I N G  
T I M E  A N D  T H E  F E AT U R E S

There is useful information on the MOUS 
metadata to estimate the processing time !
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S E L E C T I N G  A  M O D E L  T O  P R E D I C T  T H E  
P R O C E S S I N G  T I M E

Modelo Tratamiento
WMAPE 

(test)
MAPE 
(test)

R2 
(test)

WMAPE 
(training)

MAPE 
(training)

R2 
(trainin

g)

Elastic Net Standard  scaler 38% 40% 72% 36% 39% 77%

K-Neighbors Standard scaler 28% 22% 71% 1% 0% 100%

SVR
Standard scaler + log en 

features
24% 19% 77% 8% 7% 95%

Random Forest NA 29% 21% 73% 11% 8% 96%

Light Gradient Boosting
Standard scaler + log en 
target + log en features

24% 16% 76% 11% 6% 90%

Gradient Boosting NA 28% 21% 73% 4% 8% 100%

Adaptative Boosting Standard scaler 24% 17% 74% 1% 2% 100%
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S E L E C T I N G  A  M O D E L  T O  E S T I M AT E  T H E  
CO N D I T I O N E D  I Q

Quantile forest Ada Boost Bootstrap

Percentage of data points inside 45% 28%

Mean absolute inter quantile distance 23586 12994

Mean percentual inter quantile distance 23% 11%

Quantile loss 25% 6189 7235

Quantile loss 75% 16474 9835



I
N

F
O

R
M

S
 

2
0

2
2R A N K I N G  T H E  P O W E R  O F  E X P L A I N A B I L I T Y  

O F  T H E  VA R I A B L E S  F O R  T H E  R E G R E S S I O N  
M O D E L S

PROCESSING TIME ESTIMATION UNCERTAINTY ESTIMATION

The variables that explain the mean of the 
processing time are different of those which explain
the uncertainty related to that estimation!
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S E L E C T I N G  T H E  B E S T  O P T I M I Z AT I O N  
A LG O R I T H M

Compared formulations sensitibity mean_gap% 25_gap% median_gap% 75_gap%

Oracle-
Recommendation

(Alone)
NA 8,88 2 3 7

Oracle-
Recommendation with 
percentual penalization

45 8,4 1 3 5,75

Empirical improve of 
5,4%! (regret)
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• The conditioned mean model improved it’s performance by applying nonlinear
transformations to both features and response variable

• The variables that explain the expectation of the variable of interest differ from the
ones that explain the uncertainty related to the expectation

• Including the uncertainty in the optimization algorithm reported a 5.4% mean improve
in the optimality gap

F I N A L  CO M M E N T S

F U T U R E  W O R K

PENALIZING THE UNCERTAINTY ON THE CONSTRAINTS OF THE MIP

Here the idea is to maintain the minimization of the flow time, but considering that the

σ𝑗
෢𝐼𝑄𝑗must be balanced across the available machines

In order to have an effect on the decision variable, one approach is to apply the same

penalization that has been exposed and place it on the constraints that cointained ෝ𝑝𝑗

CONSTRAINT FOR UNCERTAINTY BALANCING ACROSS MACHINES
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06 P R E D I C T I V E  M O D E L S

Models that estimate the 
processing time 

Models that estimate a 
quantile of the processing time

Models that utilize the 
predictions of the quantile 
models to estimate the IQ

Descripción They are models that calculate
the conditioned expectation of 
the processing time given a set 
of observed features

They are models that calculate
the conditioned quantile of the 
processing time given a set of 
observed features. In order to 
define an interval frequently 2 of 
these models are necessary

This model is a regular 
regression model of 
conditioned mean that is 
trained on the difference of 
the superior quantile 
prediction and the inferior 
quantile prediction. In other
words on the IQ

Fórmula 𝑦𝑝𝑟𝑒𝑑 = 𝐸 𝑌 = 𝑦 𝑋1 = 𝑥1, 𝑋2
= 𝑥2, … , 𝑋𝑛 = 𝑥𝑛)

𝑄 𝑌|𝑋 𝜏 = inf{𝑦: 𝐹 𝑌 𝑋 𝑦 ≥ 𝜏} 𝑦𝑝𝑟𝑒𝑑 = 𝐸 𝑌 = 𝑦 𝑋1 = 𝑥1, 𝑋2
= 𝑥2, … , 𝑋𝑛 = 𝑥𝑛)

Métricas MAE, RMSE, MSE, MAPE, 
WMAPE and
R2

Quantile Loss, absolute range, 
percentual range and data 
capture

MAE, RMSE, MSE, MAPE, 
WMAPE and
R2
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M E T H O D O LO G Y

EDA on MOUS 
metadata

•Cuantitative 
inspection through
descriptive statistics

•Visual inspección 
trough boxplots, 
scatterplots, 
histogramas y 
heatmaps

•Variable selection and 
outlier cleaning

Transform metadata

Box-Cox, Yeo-Johnson, 
Log, Sqrt, Categorical 

encoder y ordinal 
encoder

Train 
regression 

models

•Conditioned mean

•Elastic Net, 
Kneighbors, 
Random Forest, …

•Conditioned
quantile 

•Quantile Forest, 
Quantile Gradient 
Boost, Quantile 
Light Gradient 
Boost y Bootstrap 
Methods

•Conditioned IQ

•Gradient Boost, Ada 
Boost, Light 
Gradient Boost, …

Select
regression 

models

•Conditioned mean and 
IQ metrics

•MAE, RMSE, MSE, 
MAPE, WMAPE y R2

•Conditioned quantile 
metrics

•Quantile Loss, range, 
range [%] y data 
capture[%]

Formulate MIP 
for flow time 
minimization

•Oracle formulation

•Recommendation
formulation

•Uncertainty 
penalization
formulations

Evaluate the 
quality of the 

schedules

Mean gap[%] with 
respect to the oracle

formulation
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0
S E L E C T I N G  A  M O D E L  T O  E S T I M AT E  T H E  
I C ( 2 5 % - 7 5 % )

Modelo Tratamiento
Quantile loss 
(validation)

Quantile loss 
(training)

Percentil

Light Gradient Boosting
Standard scaler + log 

en target + log en 
features

6208 2317 25%

Ada Boost Bootstrap
Standard scaler + log 

en target
5552 NA 25%

Quantile Forest NA 5671 2790 25%

Light Gradient Boosting
Standard scaler + log 

en features
8913 613 75%

Ada Boost Bootstrap
Standard scaler + log 

en target 7732 NA 75%

Quantile Forest
NA 8518 1366 75%


